NTPsec

Backup/Meinberg

Report generated: Mon Aug 8 09:33:01 2022 UTC
Start Time: Sun Aug 7 09:33:01 2022 UTC
End Time: Mon Aug 8 09:33:01 2022 UTC
Report Period: 1.0 days
Warning: plots clipped

Daily stats   Weekly stats  

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -23.473 -21.304 -19.127 1.483 21.789 34.264 62.238 40.916 55.568 13.598 1.647 µs -2.904 7.493
Local Clock Frequency Offset 1.573 1.574 1.578 1.853 2.097 2.102 2.103 0.519 0.527 0.186 1.853 ppm 746.7 6933

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 0.272 0.389 0.481 0.776 1.371 3.998 4.863 0.890 3.609 0.516 0.870 µs 7.152 47.11

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 0.098 0.115 0.150 0.721 1.357 2.349 3.079 1.207 2.234 0.441 0.711 ppb 3.26 12.27

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -23.473 -21.304 -19.127 1.483 21.789 34.264 62.238 40.916 55.568 13.598 1.647 µs -2.904 7.493

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 1.573 1.574 1.578 1.853 2.097 2.102 2.103 0.519 0.527 0.186 1.853 ppm 746.7 6933
Temp /dev/sda 46.000 46.000 46.000 47.000 48.000 48.000 48.000 2.000 2.000 0.736 47.261 °C
Temp /dev/sdb 57.000 57.000 57.000 59.000 59.000 60.000 61.000 2.000 3.000 0.657 58.488 °C
Temp /dev/sdc 58.000 58.000 58.000 58.000 60.000 60.000 60.000 2.000 2.000 0.944 58.669 °C
Temp /dev/sdd 64.000 64.000 64.000 65.000 66.000 66.000 67.000 2.000 2.000 0.743 64.760 °C
Temp /dev/sde 46.000 46.000 46.000 47.000 48.000 48.000 48.000 2.000 2.000 0.830 46.979 °C
Temp /dev/sdf 57.000 57.000 57.000 59.000 59.000 60.000 61.000 2.000 3.000 0.707 58.463 °C
Temp LM0 30.750 30.750 31.000 32.250 33.500 33.500 35.000 2.500 2.750 0.960 32.278 °C
Temp LM1 47.000 47.000 47.500 48.500 50.000 50.000 50.000 2.500 3.000 0.926 48.728 °C
Temp LM10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM11 46.000 46.000 46.000 47.000 48.000 48.000 48.000 2.000 2.000 0.732 47.265 °C
Temp LM12 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C
Temp LM13 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C
Temp LM14 31.750 32.000 32.000 33.250 34.500 34.750 34.750 2.500 2.750 0.960 33.337 °C
Temp LM15 57.000 58.000 58.000 59.000 60.000 60.000 61.000 2.000 2.000 0.738 58.732 °C
Temp LM16 63.000 63.000 63.500 64.500 66.000 66.000 66.000 2.500 3.000 0.972 64.657 °C
Temp LM17 64.000 64.000 64.000 65.000 66.000 66.000 67.000 2.000 2.000 0.846 65.042 °C
Temp LM18 58.000 58.000 58.000 59.000 59.000 60.000 61.000 1.000 2.000 0.573 58.638 °C
Temp LM19 29.000 29.000 30.000 32.000 34.000 35.000 38.000 4.000 6.000 1.306 31.780 °C
Temp LM2 46.000 46.000 46.000 47.000 48.000 48.000 48.000 2.000 2.000 0.828 46.983 °C
Temp LM20 29.000 29.000 30.000 32.000 34.000 34.000 37.000 4.000 5.000 1.322 31.589 °C
Temp LM21 26.000 27.000 28.000 30.000 31.000 32.000 36.000 3.000 5.000 1.216 29.564 °C
Temp LM22 28.000 29.000 29.000 31.000 33.000 34.000 38.000 4.000 5.000 1.280 31.000 °C
Temp LM23 26.000 27.000 28.000 30.000 32.000 32.000 36.000 4.000 5.000 1.280 29.718 °C
Temp LM3 34.000 34.000 34.000 36.000 37.000 37.000 37.000 3.000 3.000 1.082 35.686 °C
Temp LM4 33.500 33.500 33.500 35.500 36.500 36.500 36.500 3.000 3.000 1.055 35.279 °C
Temp LM5 24.000 24.000 24.000 24.000 24.000 24.000 24.000 0.000 0.000 0.000 24.000 °C
Temp LM6 29.000 29.000 29.500 31.500 33.000 34.500 36.500 3.500 5.500 1.113 31.258 °C
Temp LM7 63.000 63.000 63.000 64.000 66.000 66.000 66.000 3.000 3.000 1.097 64.352 °C
Temp LM8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp ZONE0 29.000 29.000 30.000 32.000 33.000 36.000 39.000 3.000 7.000 1.287 31.519 °C
Temp ZONE1 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C
Temp ZONE2 63.000 63.000 63.500 64.500 66.000 66.000 66.000 2.500 3.000 0.979 64.650 °C
Temp ZONE3 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:470:e815::8 (spidey.rellim.com)

peer offset 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::8 (spidey.rellim.com) -409.350 -403.450 -371.276 17.834 187.914 249.873 268.877 559.190 653.323 173.492 -23.027 µs -5.431 14.31

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.1

peer offset 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.1 -425.068 -386.307 -340.454 22.483 492.429 527.926 552.775 832.883 914.233 233.971 27.645 µs -2.892 6.331

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.17

peer offset 204.17.205.17 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.17 -43.314 -29.789 -10.354 36.386 86.967 114.116 130.785 97.321 143.905 30.221 36.773 µs 0.8536 3.401

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.23

peer offset 204.17.205.23 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.23 -42.232 -10.349 2.007 34.701 70.903 88.177 130.275 68.896 98.526 21.665 35.845 µs 2.619 7.825

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.24

peer offset 204.17.205.24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.24 -67.710 -43.916 -32.062 33.746 70.452 89.048 98.177 102.514 132.964 30.208 29.028 µs -0.7548 3.178

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.27

peer offset 204.17.205.27 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.27 -25.214 -18.624 -4.548 27.682 57.890 72.138 79.302 62.438 90.762 18.852 27.536 µs 1.397 4.09

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -23.474 -21.305 -19.128 1.484 21.790 34.265 62.239 40.918 55.570 13.599 1.647 µs -2.905 7.493

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(2)

peer offset SHM(2) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(2) 40.947 40.954 40.979 41.259 41.564 41.595 41.601 0.584 0.641 0.186 41.264 s 1.084e+07 2.398e+09

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::8 (spidey.rellim.com)

peer jitter 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 3.311 5.336 7.605 16.743 29.004 36.307 56.661 21.399 30.971 6.776 17.424 µs 9.439 31.15

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.1

peer jitter 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.1 4.343 6.930 9.961 23.022 40.097 46.347 53.145 30.136 39.417 9.320 24.015 µs 8.995 25.87

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.17

peer jitter 204.17.205.17 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.17 6.733 8.878 11.621 24.925 56.572 528.204 1,903.694 44.951 519.326 154.929 42.179 µs 8.757 104.5

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.23

peer jitter 204.17.205.23 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.23 4.510 6.562 8.907 22.046 51.750 77.023 1,134.705 42.843 70.461 46.269 26.797 µs 20.48 486.2

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.24

peer jitter 204.17.205.24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.24 4.056 5.717 8.538 19.316 73.073 92.663 138.178 64.535 86.946 21.206 27.760 µs 2.597 8.143

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.27

peer jitter 204.17.205.27 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.27 1.337 4.073 6.424 14.718 52.989 78.088 87.783 46.565 74.015 15.232 19.962 µs 2.936 10.08

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.262 0.359 0.512 1.817 5.435 16.266 27.066 4.923 15.907 2.535 2.402 µs 4.885 37.92

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(2)

peer jitter SHM(2) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(2) 0.000 513.168 520.492 545.673 572.465 578.538 806.537 51.973 65.370 32.495 544.286 µs 3945 6.259e+04

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 1.573 1.574 1.578 1.853 2.097 2.102 2.103 0.519 0.527 0.186 1.853 ppm 746.7 6933
Local Clock Time Offset -23.473 -21.304 -19.127 1.483 21.789 34.264 62.238 40.916 55.568 13.598 1.647 µs -2.904 7.493
Local RMS Frequency Jitter 0.098 0.115 0.150 0.721 1.357 2.349 3.079 1.207 2.234 0.441 0.711 ppb 3.26 12.27
Local RMS Time Jitter 0.272 0.389 0.481 0.776 1.371 3.998 4.863 0.890 3.609 0.516 0.870 µs 7.152 47.11
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 3.311 5.336 7.605 16.743 29.004 36.307 56.661 21.399 30.971 6.776 17.424 µs 9.439 31.15
Server Jitter 204.17.205.1 4.343 6.930 9.961 23.022 40.097 46.347 53.145 30.136 39.417 9.320 24.015 µs 8.995 25.87
Server Jitter 204.17.205.17 6.733 8.878 11.621 24.925 56.572 528.204 1,903.694 44.951 519.326 154.929 42.179 µs 8.757 104.5
Server Jitter 204.17.205.23 4.510 6.562 8.907 22.046 51.750 77.023 1,134.705 42.843 70.461 46.269 26.797 µs 20.48 486.2
Server Jitter 204.17.205.24 4.056 5.717 8.538 19.316 73.073 92.663 138.178 64.535 86.946 21.206 27.760 µs 2.597 8.143
Server Jitter 204.17.205.27 1.337 4.073 6.424 14.718 52.989 78.088 87.783 46.565 74.015 15.232 19.962 µs 2.936 10.08
Server Jitter SHM(0) 0.262 0.359 0.512 1.817 5.435 16.266 27.066 4.923 15.907 2.535 2.402 µs 4.885 37.92
Server Jitter SHM(2) 0.000 513.168 520.492 545.673 572.465 578.538 806.537 51.973 65.370 32.495 544.286 µs 3945 6.259e+04
Server Offset 2001:470:e815::8 (spidey.rellim.com) -409.350 -403.450 -371.276 17.834 187.914 249.873 268.877 559.190 653.323 173.492 -23.027 µs -5.431 14.31
Server Offset 204.17.205.1 -425.068 -386.307 -340.454 22.483 492.429 527.926 552.775 832.883 914.233 233.971 27.645 µs -2.892 6.331
Server Offset 204.17.205.17 -43.314 -29.789 -10.354 36.386 86.967 114.116 130.785 97.321 143.905 30.221 36.773 µs 0.8536 3.401
Server Offset 204.17.205.23 -42.232 -10.349 2.007 34.701 70.903 88.177 130.275 68.896 98.526 21.665 35.845 µs 2.619 7.825
Server Offset 204.17.205.24 -67.710 -43.916 -32.062 33.746 70.452 89.048 98.177 102.514 132.964 30.208 29.028 µs -0.7548 3.178
Server Offset 204.17.205.27 -25.214 -18.624 -4.548 27.682 57.890 72.138 79.302 62.438 90.762 18.852 27.536 µs 1.397 4.09
Server Offset SHM(0) -23.474 -21.305 -19.128 1.484 21.790 34.265 62.239 40.918 55.570 13.599 1.647 µs -2.905 7.493
Server Offset SHM(2) 40.947 40.954 40.979 41.259 41.564 41.595 41.601 0.584 0.641 0.186 41.264 s 1.084e+07 2.398e+09
Temp /dev/sda 46.000 46.000 46.000 47.000 48.000 48.000 48.000 2.000 2.000 0.736 47.261 °C
Temp /dev/sdb 57.000 57.000 57.000 59.000 59.000 60.000 61.000 2.000 3.000 0.657 58.488 °C
Temp /dev/sdc 58.000 58.000 58.000 58.000 60.000 60.000 60.000 2.000 2.000 0.944 58.669 °C
Temp /dev/sdd 64.000 64.000 64.000 65.000 66.000 66.000 67.000 2.000 2.000 0.743 64.760 °C
Temp /dev/sde 46.000 46.000 46.000 47.000 48.000 48.000 48.000 2.000 2.000 0.830 46.979 °C
Temp /dev/sdf 57.000 57.000 57.000 59.000 59.000 60.000 61.000 2.000 3.000 0.707 58.463 °C
Temp LM0 30.750 30.750 31.000 32.250 33.500 33.500 35.000 2.500 2.750 0.960 32.278 °C
Temp LM1 47.000 47.000 47.500 48.500 50.000 50.000 50.000 2.500 3.000 0.926 48.728 °C
Temp LM10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM11 46.000 46.000 46.000 47.000 48.000 48.000 48.000 2.000 2.000 0.732 47.265 °C
Temp LM12 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C
Temp LM13 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C
Temp LM14 31.750 32.000 32.000 33.250 34.500 34.750 34.750 2.500 2.750 0.960 33.337 °C
Temp LM15 57.000 58.000 58.000 59.000 60.000 60.000 61.000 2.000 2.000 0.738 58.732 °C
Temp LM16 63.000 63.000 63.500 64.500 66.000 66.000 66.000 2.500 3.000 0.972 64.657 °C
Temp LM17 64.000 64.000 64.000 65.000 66.000 66.000 67.000 2.000 2.000 0.846 65.042 °C
Temp LM18 58.000 58.000 58.000 59.000 59.000 60.000 61.000 1.000 2.000 0.573 58.638 °C
Temp LM19 29.000 29.000 30.000 32.000 34.000 35.000 38.000 4.000 6.000 1.306 31.780 °C
Temp LM2 46.000 46.000 46.000 47.000 48.000 48.000 48.000 2.000 2.000 0.828 46.983 °C
Temp LM20 29.000 29.000 30.000 32.000 34.000 34.000 37.000 4.000 5.000 1.322 31.589 °C
Temp LM21 26.000 27.000 28.000 30.000 31.000 32.000 36.000 3.000 5.000 1.216 29.564 °C
Temp LM22 28.000 29.000 29.000 31.000 33.000 34.000 38.000 4.000 5.000 1.280 31.000 °C
Temp LM23 26.000 27.000 28.000 30.000 32.000 32.000 36.000 4.000 5.000 1.280 29.718 °C
Temp LM3 34.000 34.000 34.000 36.000 37.000 37.000 37.000 3.000 3.000 1.082 35.686 °C
Temp LM4 33.500 33.500 33.500 35.500 36.500 36.500 36.500 3.000 3.000 1.055 35.279 °C
Temp LM5 24.000 24.000 24.000 24.000 24.000 24.000 24.000 0.000 0.000 0.000 24.000 °C
Temp LM6 29.000 29.000 29.500 31.500 33.000 34.500 36.500 3.500 5.500 1.113 31.258 °C
Temp LM7 63.000 63.000 63.000 64.000 66.000 66.000 66.000 3.000 3.000 1.097 64.352 °C
Temp LM8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp ZONE0 29.000 29.000 30.000 32.000 33.000 36.000 39.000 3.000 7.000 1.287 31.519 °C
Temp ZONE1 27.800 27.800 27.800 27.800 27.800 27.800 27.800 0.000 0.000 0.000 27.800 °C
Temp ZONE2 63.000 63.000 63.500 64.500 66.000 66.000 66.000 2.500 3.000 0.979 64.650 °C
Temp ZONE3 29.800 29.800 29.800 29.800 29.800 29.800 29.800 0.000 0.000 0.000 29.800 °C
Summary as CSV file


This server:

CPU: Quad core Intel Xeon E3-1241 v3
Kernel: config.gz
Motherboard: Supermicro X10SAE
OS: Gentoo stable
GPS; Meinberg GPS180PEX
GPS/PPS server: gpsd
NTP server: NTPsec
ntp.conf: current
ntp.log: current

Notes:

Notes:
03:20Z 20 Dec 2018 Change poll from 8s to 4s.  4s seems best.
01:30Z 20 Dec 2018 Change poll from 2s to 8s.
23:00Z 20 Dec 2018 Change poll from 4s to 2s.
22:00Z 20 Dec 2018 Change poll from 64s to 4s.
21:40  19 Dec 2018 -- just started

Poll:
64s   SHM(0) offset StdDev 34.5 us, jitter 5.3 us
8s    8s better jitter than 4s, but worse offset than 4s
4s    SHM(0) offset mean 0 ns StdDev 481 ns, jitter 449 ns StdDev 250 ns
      better than 2s, almost unstable
2s    




Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of kurtosis. A normal distribution has a kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of skewness. Wikipedia describes it best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!